Generalized Spatial Two Stage Least Squares Estimation of Spatial Autoregressive Models with Autoregressive Disturbances in the Presence of Endogenous Regressors and Many Instruments

نویسنده

  • Fei Jin
چکیده

This paper studies the generalized spatial two stage least squares (GS2SLS) estimation of spatial autoregressive models with autoregressive disturbances when there are endogenous regressors with many valid instruments. Using many instruments may improve the efficiency of estimators asymptotically, but the bias might be large in finite samples, making the inference inaccurate. We consider the case that the number of instruments K increases with, but at a rate slower than, the sample size, and derive the approximate mean square errors (MSE) that account for the trade-offs between the bias and variance, for both the GS2SLS estimator and a bias-corrected GS2SLS estimator. A criterion function for the optimal K selection can be based on the approximate MSEs. Monte Carlo experiments are provided to show the performance of our procedure of choosing K.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two Stage Least Squares Estimation of Spatial Autoregressive Models with Endogenous Regressors and Many Instruments

This paper considers the IV estimation of spatial autoregressive models with endogenous regressors in the presence of many instruments. To improve asymptotic e¢ ciency, it may be desirable to use many valid instruments. However, …nite sample properties of IV estimators can be sensitive to the number of instruments. For a spatial model with endogenous regressors, this paper derives the asymptoti...

متن کامل

Appendices to Two Stage Least Squares Estimation of Spatial Autoregressive Models with Endogenous Regressors and Many Instruments

Lemma A.3 Under Assumption 4 (iii), we have (i) P i P 2 ii = o(K), P i 6=j PiiPjj = K 2 + o(K), P i 6=j PijPij = P i 6=j PijPji = K + o(K); (ii) P iMiiPii = o(K), P i 6=jMiiPjj = Ktr(M) + o(K) = O(K), P i 6=jMijPij = P i 6=jMijPji = tr(M) + o(K) = O(K); (iii) P iM 2 ii = O(K), P i 6=jMiiMjj = tr (M) P iM 2 ii = O(K ), P i 6=jMijMij = tr(MM 0) P iM 2 ii = O(K), P i 6=jMijMji = tr(M) P iM 2 ii = ...

متن کامل

On Two-step Estimation of a Spatial Autoregressive Model with Autoregressive Disturbances and Endogenous Regressors

In this paper, we consider a spatial-autoregressive model with autoregressive disturbances, where we allow for endogenous regressors in addition to a spatial lag of the dependent variable. We suggest a two-step generalized method of moments (GMM) and instrumental variable (IV) estimation approach extending earlier work by, e.g., Kelejian and Prucha (1998, 1999). In contrast to those papers, we ...

متن کامل

Finite sample properties of estimators of spatial autoregressive models with autoregressive disturbances

The article investigates the finite sample properties of estimators for spatial autoregressive models where the disturbance terms may follow a spatial autoregressive process. In particular we investigate the finite sample behavior of the feasible generalized spatial two-stage least squares (FGS2SLS) estimator introduced by Kelejian and Prucha (1998), the maximum likelihood (ML) estimator, as we...

متن کامل

Estimation of Spatial Regression Models with Autoregressive Errors by Two- Stage Least Squares Procedures: a Serious Problem

Time series regression models that have autoregressive errors are often estimated by two-stage procedures which are based on the Cochrane-Orcutt (1949) transformation. It seems natural to also attempt the estimation of spatial regression models whose error terms are autoregressive in terms of an analogous transformation. Various two-stage least squares procedures suggest themselves in this cont...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013